ARQUEOLOGIA IBEROAMERICANA - ISSN 1989-4104
Vol. 52 (2023), pp. 69–86 • 2.04 MB
RESEARCH ARTICLE
Abdulraouf Mayyas,1 Wassef Al Sekhaneh,2 Diya Al Fuqara,3 Ruba Seiseh,4
Fardous Al-Ajlouny,5 Zeidoun Al Muheisen,6 Jürgen Popp 7

(1) Department of Conservation Science, Queen Rania Faculty of Tourism and Heritage, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (2) Department of Conservation and Management of Cultural Resources, Faculty of Archaeology and Anthropology, Yarmouk University, P.O. Box. 566, Irbid 21163, Jordan; (3) Department of Natural Resources and Chemical Engineering, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan; (4) Department of Cultural Resources Management and Conservation, School of Archaeology and Tourism, The University of Jordan, P.O. Box. 11942, Amman, Jordan; (5) Department of Sustainable Tourism, Queen Rania Faculty of Tourism and Heritage, The Hashemite University, P.O. Box. 330127, Zarqa 13133, Jordan; (6) Department of Archaeology, Faculty of Archaeology and Anthropology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan; (7) Leibniz Institute of Photonic Technology (IPHT) in Jena and the Chair of Physical Chemistry (IPC) at Friedrich Schiller University in Jena, Helmholtzweg 4, 07743 Jena, Germany
(a_s_mayyas@hotmail.com)


Arqueol. Iberoam.


Abstract
This study aimed at investigating the chemical and mineralogical compositions of five Roman coins (four copper-based and one silver-based alloys) corrosion products, and explore the topographic and morphological microscopic features of the patinas formed on the surface of the copper-based coins. For this purpose, an interdisciplinary approach to micro-destructive methods—microscopic (OM and SEM), mineralogical (XRD), elemental (XRF and SEM-EDX), and molecular (ATR-FTIR)—was conducted. The results showed that cuprite is the principle patina initially formed on the surface of the copper-based alloys by the redundant interaction with the surrounding environmental burial conditions, which is most likely an oxygenated and moisturized soil. This interaction was also observed in the formation of a secondary patina composed of malachite and azurite, which lately was invaded by the corrosive cycle process (bronze disease) represented by the formation of nantokite, atacamite and paratacamite that affected the cuprite primary patina of the copper-based coins during burial. The silver-based coin also suffered an aggressive attack by oxygen, sulfur and chloride ions during burial and formed oxide, sulfide, and chloride of silver, in addition to the corrosion products of cuprite, atacamite, and carbonate of copper, which is one of the alloying elements of this coin. The findings of this study also show that the copper-based coins were made of quaternary Cu-Sn-Zn-Pb alloy, and the silver-based coin was made of ternary Ag-Cu-Sn alloy. Therefore, the study points out that these coins were suffering from the corrosion phenomenon by the reaction with oxide, sulfide, carbonate, hydroxyl, and chloride ions, which are most likely found in the burial soil and incorporated within the alloy corrosion products. Contamination with Si, Fe, Al, and Ca elements present in the soil was also seen. We recommend protecting these alloys to prevent further degradation that may occur during storage and exposure to the atmosphere after excavation.

Keywords
Khirbat edh-Dharih; Jordan; bronze; coin; corrosion; OM; SEM-EDX; XRF; XRD; ATR-FTIR.

Cite as
Mayyas, A.; W. Al-Sekhaneh; D. Al-Fuqara; R. Seiseh; F. Al-Ajlouny; Z. Al-Muheisen; J. Popp. 2023. Microstructural and Compositional Characterization of Roman Bronze Coins from Khirbat Edh-Dharih in Jordan. Arqueología Iberoamericana 52: 69–86.

Other Persistent Identifiers

Received: August 25, 2023. Modified: September 9, 2023.
Accepted: September 11, 2023. Published: September 26, 2023.

Acknowledgments
The researchers are grateful to the research group of Prof. Jürgen Popp at the Leibniz Institute of Photonic Technology (IPHT) in Jena and the Department of Physical Chemistry at Friedrich Schiller University in Jena for the SEM, SEM-EDX, and FTIR measurements, and to the FH Münster University of Applied Sciences for the XRF measurements, as well as to the Yarmouk University, laboratories of the Faculty of Archaeology and Anthropology, for the OM and XRD measurements.

References

Akyuz, S.; T. Akyuz; S. Basaran; C. Bolcal; A. Gulec. 2008. Analysis of ancient potteries using FT-IR, micro-Raman and EDXRF spectrometry. Vibrational Spectroscopy 48(2): 276–280. Google Scholar.

Alberghina, M.F.; R. Barraco; M. Brai; T. Schillaci; L. Tranchina. 2011. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes. Spectrochimica Acta Part B: Atomic Spectroscopy 66(2): 129–137. Google Scholar.

Bentahar, M.; A. Petitmangin; C. Blanc; A. Chabas; S. Montresor; C. Niclaeys; A. Elbartali; D. Najjar; R. Duccini; M. Jean; S. Nowak; R. Pires-Brazuna; P. Dubot. 2023. Does Atmospheric Corrosion Alter the Sound Quality of the Bronze Used for Manufacturing Bells? Materials 16(13): 4763. Google Scholar.

Bernard, M.C.; S. Joiret. 2009. Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochimica Acta 54(22): 5199–5205. Google Scholar.

Bilinski, H. 2008. Weathering of sandstones studied from the composition of stream sediments of the Kupa River (Croatia). Mineralogical Magazine 72(1): 23–26. Google Scholar.

Bohnenkamp, K.; H.J. Engell. 1962. Ablauf der Oxydation von Eisen und Kohlenstoff bei der Verzunderung von Eisen-Kohlenstoff-Legierungen. Archiv für das Eisenhüttenwesen 33(6): 359–367. Google Scholar.

Brassard, D.; D.K. Sarkar; M.A. El Khakani; L. Ouellet. 2004. High-k titanium silicate thin films grown by reactive magnetron sputtering for complementary metal-oxide-semiconductor applications. Journal of Vacuum Science & Technology A 22: 851–855. Google Scholar.

Buzatu, A.; N. Buzgar. 2010. The Raman study of single-chain silicates. Analele Stiintifice de Universitatii "Al I. Cuza" din Iasi. Seria Geologie 56(1): 107–125. Google Scholar.

Buzgar, N.; A.I. Apopei. 2009. The Raman study of certain carbonates. Analele Stiintifice de Universitatii "Al I. Cuza" din Iasi. Seria Geologie 55(2): 97–112. Google Scholar.

Canadian Chemical Processing. 1975. Southam Business Publications.

Catelli, E.; G. Sciutto; S. Prati; Y. Jia; R. Mazzeo. 2018. Characterization of outdoor bronze monument patinas: the potentialities of near-infrared spectroscopic analysis. Environmental Science and Pollution Research 25: 24379–24393. Google Scholar.

Chiavari, C.; A. Colledan; A. Frignani; G. Brunoro. 2006. Corrosion evaluation of traditional and new bronzes for artistic castings. Materials Chemistry and Physics 95(2–3): 252–259. Google Scholar.

Chiavari, C.; K. Rahmouni; H. Takenouti; S. Joiret; P. Vermaut; L. Robbiola. 2007. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta 52(27): 7760–7769. Google Scholar.

Collini, L., ed. 2012. Copper Alloys: Early Applications and Current Performance. Enhancing Processes. IntechOpen. Google Scholar.

Constantinides, I.; A. Adriaens; F. Adams. 2002. Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science 189(1–2): 90–101. Google Scholar.

Dillmann, P.; G. Béranger; P. Piccardo; H. Matthiessen. 2014. Corrosion of Metallic Heritage Artefacts: Investigation, Conservation and Prediction of Long Term Behaviour. Elsevier. Google Scholar.

Doménech-Carbó, A.; M.T. Doménech-Carbó; S. Capelo; T. Pasíes; I. Martínez-Lázaro. 2014. Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition 53(35): 9262–9266. Google Scholar.

Doménech-Carbó, A.; S. Capelo; J. Piquero; M.T. Doménech-Carbó; J. Barrio; A. Fuentes; W. Al Sekhaneh. 2016. Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating. Materials and Corrosion 67: 120–129. Google Scholar.

Doménech-Carbó, A.; M.T. Doménech-Carbó; J. Redondo-Marugán; L. Osete-Cortina; J. Barrio; A. Fuentes; M.V. Vivancos-Ramón; W. Al Sekhaneh; B. Martínez; I. Martínez-Lázaro; T. Pasíes. 2018. Electrochemical Characterization and Dating of Archaeological Leaded Bronze Objects Using the Voltammetry of Immobilized Particles. Archaeometry 60(2): 308–324. Google Scholar.

Evans, V.R. 1976. The Corrosion and Oxidation of Metals (Second Supplementary Volume). London: E. Arnold. Google Scholar.

Frost, R.L.; M.J. Dickfos. 2007. Raman spectroscopy of halogen-containing carbonates. Journal of Raman Spectroscopy 38(11): 1516–1522. Google Scholar.

Frost, R.L.; W.N. Martens; L. Rintoul; E. Mahmutagic; J.T. Kloprogge. 2002. Raman spectroscopic study of azurite and malachite at 298 and 77 K. Journal of Raman Spectroscopy 33(4): 252–259. Google Scholar.

Frost, R.L.; Y. Xi; R. Scholz; A. López; F.M. Belotti. 2013. Vibrational spectroscopic characterization of the phosphate mineral hureaulite – (Mn, Fe)5(PO4)2(HPO4)2·4(H2O). Vibrational Spectroscopy 66: 69–75. Google Scholar.

Gettens, R. J. 1961. Mineral alteration products on ancient metal objects. Studies in Conservation 6(sup. 1): 89–92. Google Scholar.

Huisman, H.; R. Ackermann; L. Claes; L. van Eijck; T. de Groot; I. Joosten; F. Kemmers; N. Kerkhoven; J.W. de Kort; S.L. Russo et alii. 2023. Change lost: Corrosion of Roman copper alloy coins in changing and variable burial environments. Journal of Archaeological Science: Reports 47: 103799. Google Scholar.

Kaufman, B. 2018. Anthropology of Metallurgical Design: A Survey of Metallurgical Traditions from Hominin Evolution to the Industrial Revolution. In Metallurgical Design and Industry, eds. B. Kaufman & C. Briant, pp. 1–70. Cham: Springer. Google Scholar.

Kotlar, M.; N. Matijaković; V. Desnica; K. Marušić. 2021. Studying a 2 millennia old bronze kettle using easily accessible characterization techniques. Heritage Science 9: 10. Google Scholar.

Kotlar, M.; N. Matijaković; V. Desnica; K. Marušić. 2020. Using characterization techniques for determining the history of a 2 millennia old kettle made of bronze alloyed with iron. Research Square, Preprint (Version 1): 24 pp. Google Scholar.

Kutz, M. 2015. Mechanical Engineers' Handbook. Volume 1: Materials and Engineering Mechanics. Wiley. Google Scholar.

Landolt, D. 2007. Corrosion and Surface Chemistry of Metals. CRC Press. Google Scholar.

Lopesino, P.; J. Alcántara; D. de la Fuente; B. Chico; J.A. Jiménez; M. Morcillo. 2018. Corrosion of copper in unpolluted chloride-rich atmospheres. Metals 8(11): 866. Google Scholar.

Malvault, J.Y.; J. Lopitaux; D. Delahaye; M. Lenglet. 1995. Cathodic reduction and infrared reflectance spectroscopy of basic copper (II) salts on copper substrate. Journal of Applied Electrochemistry 25: 841–845. Google Scholar.

Marchand, G.; E. Guilminot; S. Lemoine; L. Rossetti; M. Vieau; N. Stephant. 2014. Degradation of archaeological horn silver artefacts in burials. Heritage Science 2: 5. Google Scholar.

McCafferty, E. 2010. Introduction to Corrosion Science. New York: Springer. Google Scholar.

Meigh, H. 2018. Cast and Wrought Aluminium Bronzes: Properties, Processes and Structure. CRC Press. Google Scholar.

Mircea, O.; I. Sârghie; I. Sandu; M. Quaranta; A.V. Sandu. 2009a. The Study of Textile Impressions from Corossions Products of Some Old Iron Artefacts by Means of the Complementary Analytical Techniques. Revista de Chimie 60(2): 201–207. Google Scholar.

Mircea, O.; I. Sârghie; I. Sandu; V. Ursachi; M. Quaranta; A.V. Sandu. 2009b. Study of Some Atypical Degradation Processes of an Iron Archeological Piece. Revista de Chimie 60(4): 332–336. Google Scholar.

Monari, G.; M. Galeotti; M. Matteini; B. Salvadori; R. Stifanese; P. Traverso; S. Vettori; P. Letardi. 2023. Protective treatments for copper alloy artworks: preliminary studies of sodium oxalate and limewater effectiveness against bronze disease. Environmental Science and Pollution Research 30: 27441–27457. Google Scholar.

Nair, M.T.S.; L. Guerrero; O.L. Arenas; P.K. Nair. 1999. Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Applied Surface Science 150(1–4): 143–151. Google Scholar.

Naval Education and Training Program Development Center (NETPDC). 1972. Aviation Support Equipment Technician ASE 3 & 2 and ASM 3 & 2. Vol. 1, Basics. Department of the Navy. Google Scholar.

Oudbashi, O.; H. Fadaei. 2019. After Eighty Years: Experimental Study of Atmospheric Corrosion in the Metallic Dome of Hafez's tomb, Shiraz, Iran. Studies in Conservation 64(4): 208–220. Google Scholar.

Oudbashi, O.; A. Hasanpour; P. Davami. 2016. Investigation on corrosion stratigraphy and morphology in some Iron Age bronze alloys vessels by OM, XRD and SEM–EDS methods. Applied Physics A 122: 262. Google Scholar.

Oudbashi, O.; R. Naseri; B. Heidarpour; A. Ahmadi. 2019. Study on the Corrosion Mechanisms and Morphology of Archaeological Bronze Objects from a Bronze Age Graveyard in Southwestern Iran. In Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group (Neuchâtel, Switzerland, September 2-6, 2019), eds. C. Chemello, L. Brambilla & E. Joseph, pp. 1–8. Google Scholar.

Pagano, S.; G. Balassone; C. Germinario; C. Grifa; F. Izzo; M. Mercurio; P. Munzi; L. Pappalardo; E. Spagnoli; M. Verde; A. De Bonis. 2023. Archaeometric Characterisation and Assessment of Conservation State of Coins: The Case-Study of a Selection of Antoniniani from the Hoard of Cumae (Campania Region, Southern Italy). Heritage 6(2): 2038–2055. Google Scholar.

Petiti, C.; L. Toniolo; D. Gulotta; B. Mariani; S. Goidanich. 2020. Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment. Environmental Science and Pollution Research 27: 13081–13094. Google Scholar.

Pieta, E.; J. Lekki; J.M. del Hoyo-Meléndez; C. Paluszkiewicz; M. Nowakowski; M. Matosz; W.M. Kwiatek. 2018. Surface characterization of medieval silver coins minted by the early Piasts: FT-IR mapping and SEM/EDX studies. Surface and Interface Analysis 50(1): 78–86. Google Scholar.

Redondo-Marugán, J.; J. Piquero-Cilla; M.T. Doménech-Carbó; B. Ramírez-Barat; W. Al Sekhaneh; S. Capelo; A. Doménech-Carbó. 2017. Characterizing archaeological bronze corrosion products intersecting electrochemical impedance measurements with voltammetry of immobilized particles. Electrochimica Acta 246: 269–279. Google Scholar.

Robbiola, L.; J.M. Blengino; C. Fiaud. 1998. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science 40(12): 2083–2111. Google Scholar.

Roberts, B.W.; C.P. Thornton. 2014. Archaeometallurgy in Global Perspective: Methods and Syntheses. Springer. Google Scholar.

Sandu, I.; C. Marutoiu; I.G. Sandu; A. Alexandru; A. Sandu. 2006. Authentication of old bronze coins I. Study on archaeological patina. Acta Universitatis Cibiniensis Seria F Chemia 9(1): 39–53. Google Scholar.

Sandu, I.; O. Mircea; A.V. Sandu; I. Sarghie; I.G. Sandu; V. Vasilache. 2010. Non-invasive Techniques in the Analysis of Corrosion Crusts Formed on Archaeological Metal Objects. Revista de Chimie 61(11): 1054–1058. Google Scholar.

Sandu, I.; N. Ursulescu; I.G. Sandu; O. Bounegru; I.C.A. Sandu; A. Alexandru. 2008. Pedological stratification effect of corrosion and contamination products on Byzantine bronze artefacts. Corrosion Engineering, Science and Technology 43(3): 256–266. Google Scholar.

Sandu, I.G.; F.A. Tencariu; D.M. Vornicu; A.V. Sandu; A. Vornicu; V. Vasilache; I. Sandu. 2014. Establishing the archaeo-metallurgic ornamentation process of an axe from the bronze age by OM, SEM-EDX, and Micro-FTIR. Microscopy Research and Technique 77(11): 918–927. Google Scholar.

Scott, D.A. 1994. An Examination of the Patina and Corrosion Morphology of Some Roman Bronzes. Journal of the American Institute for Conservation 33(1): 1–23. Google Scholar.

Scott, D.A. 1997. Copper compounds in metals and colorants: Oxides and hydroxides. Studies in Conservation 42(2): 93–100. Google Scholar.

Scott, D.A. 2002. Copper and Bronze in Art: Corrosion, Colorants, Conservation. Los Angeles: Getty Publications. Google Scholar.

Scott, D.A. 2011. Ancient Metals: Microstructure and Metallurgy. Vol. 1. Los Angeles: Conservation Science Press. Google Scholar.

Strandberg, H. 1998. Reactions of copper patina compounds–I. Influence of some air pollutants. Atmospheric Environment 32(20): 3511–3520. Google Scholar.

Strandberg, H.; L.G. Johansson. 1998. Some Aspects of the Atmospheric Corrosion of Copper in the Presence of Sodium Chloride. Journal of the Electrochemical Society 145(4): 1093. Google Scholar.

Thyssen Inc. 1998. Bronze Alloys: A Comparative Guide to Alloys, Applications and Avilability. Thyssen, Copper and Brass Sales.

Torrisi, L.; F. Caridi; L. Giuffrida; A. Torrisi; G. Mondio; T. Serafino; M. Caltabiano; E.D. Castrizio; E. Paniz; A. Salici. 2010. LAMQS analysis applied to ancient Egyptian bronze coins. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(10): 1657–1664. Google Scholar.

Vassiliou, P.; O. Papadopolou; S. Grassini; E. Angelini. 2019. Provenance, manufacturing and corrosion behavior of Ancient Hellenistic coins from Egypt. In 2019 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, pp. 554–559. Google Scholar.

Volpi, F.; M. Vagnini; R. Vivani; M. Malagodi; G. Fiocco. 2023. Non-invasive identification of red and yellow oxide and sulfide pigments in wall-paintings with portable ER-FTIR spectroscopy. Journal of Cultural Heritage 63: 158–168. Google Scholar.

Wang, Y.; Y.X. Moo; C. Chen; P. Gunawan; R. Xu. 2010. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres. Journal of Colloid and Interface Science 352(2): 393–400. Google Scholar.

Wang, X.; J. Song; H. Zhou; Z. Fan; J. Shi; J. Chen; K. Xiao. 2023. Mechanism of dendrite segregation on corrosion behaviour of antique cast low Sn bronze. Corrosion Science 222: 111402. Google Scholar.

Wu, J.; J. Wang. 2019. The effects of UV and visible light on the corrosion of bronze covered with an oxide film in aqueous solution. Corrosion Science 154: 144–158. Google Scholar.

Yang, Y.; X. Cao; Y. Li; Z. Wang; B. Li; X. Jiang; J. Jia; C. Pan. 2020. Spontaneous Symmetry-Breaking in the Corrosion Transformation of Ancient Bronzes. Minerals 10(8): 656. Google Scholar.

Yu, P.; R.J. Kirkpatrick; B. Poe; P.F. McMillan; X. Cong. 1999. Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. Journal of the American Ceramic Society 82(3): 742–748. Google Scholar.


Creative Commons License

© 2023 ARQUEOLOGIA IBEROAMERICANA. ISSN 1989-4104. License CC BY 3.0 ES.
Open Access Journal. Edited & Published by Pascual Izquierdo-Egea [P. I. Egea].
Graus & Pina de Ebro, Spain. W3C HTML 4.01 compatible. Contact