DOI: 10.5281/zenodo.10211773.
Vol. 52 (2023), pp. 144–152 • 978 KB
RESEARCH ARTICLE
Wassef Al Sekhaneh,1,2 Holger A. Scheidt,2 Anja Penk,2 Daniel Huster 2
(1) Department of Conservation and Management of Cultural Resources, Faculty of Archaeology and Anthropology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan;
(2) Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, D-04107 Leipzig, Germany
(ekhaneh@yu.edu.jo)
Erratum
Abstract
Solid-State Nuclear Magnetic Resonance (SS-NMR) and Attenuated Total Reflection Fourier Transformation Infrared (ATR-FTIR) spectroscopy have excellent measurement performance for both organic and inorganic parts of bone or dental dentin.
Solid-State Magic-Angle Spinning Nuclear Magnetic Resonance (SS-MAS-NMR) spectroscopy is an effective and constructive method for classifying samples, whether they are new or old.
The objectives of this study include finding a new method for dating bone by SS-MAS-NMR and ATR-FTIR studies of old bone, supported by absolute dating of radioactive carbon isotopes.
The specific objectives can be addressed by measuring the decomposition factor of the organic fraction in ancient bones and dentin in modern teeth, which are most similar to bones in terms of chemical composition, to arrive at a new time formula for the dating method.
Eight old samples and one fresh tooth sample were taken for comparison. The method studied will be established as a new tool for characterizing ancient bone samples and detecting hydroxyl in bone minerals by SS-MAS-NMR.
Keywords
Ancient bone; Jordan; hydroxyapatite; SS-MAS-NMR; ATR-FTIR; AMS dating; DIPSHIFT experiments; adenosine triphosphate (ATP); hydroxyproline.
Cite as
Al-Sekhaneh, W.; H. A. Scheidt; A. Penk; D. Huster. 2023. Characterization and Dating of Archaeological Excavated Human Bone from Jordan by High-Resolution 31P and 14C NMR and Fourier Transformation Infrared. Arqueología Iberoamericana 52: 144–152.
Other Persistent Identifiers
ARK: ark:/49934/318.
Guaranteed preservation
Archived in the Internet Archive.
Received: October 3, 2023. Modified: November 5, 2023.
Accepted: November 19, 2023. Published: November 30, 2023. Acknowledgments
The researchers are grateful to Yarmouk University in Jordan for financial support and to IPHT Jena (Germany), particularly to Prof. Jürgen Popp, the Director of IPHT and the Chair of Physical Chemistry at Friedrich-Schiller University Jena. We extend our heartfelt gratitude to Dr. Diya Al Fuqara for thoroughly reviewing the manuscript content. Also, many thanks to Prof. Wolfgang Kretchmer, Dr. Andreas Scharf, and K. Kritzler for AMS measurements at the Erlangen tandem accelerator.
References
Al-Sekhaneh, W. 2016. Mapping of ancient teeth using absorption of ATR-FTIR spectroscopy and laser scattering of Raman spectroscopy. Journal of Optoelectronics and Biomedical Materials 8(4): 155–167. Google Scholar. Aue, W.P.; A.H. Roufosse; M.J. Glimcher; R.G. Griffin. 1984. Solid-State Phosphorus-31 Nuclear Magnetic Resonance Studies of Synthetic Solid Phases of Calcium Phosphate: Potential Models of Bone Mineral. Biochemistry 23(25): 6110–6114. Google Scholar. Bryan, M.A.; J.W. Brauner; G. Anderle; C.R. Flach; B. Brodsky; R. Mendelsohn. 2007. FTIR Studies of Collagen Model Peptides: Complementary Experimental and Simulation Approaches to Conformation and Unfolding. Journal of the American Chemical Society 129(25): 7877–7884. Google Scholar. Cho, G.; Y. Wu; J.L. Ackerman. 2003. Detection of Hydroxyl Ions in Bone Mineral by Solid-State NMR Spectroscopy. Science 300(5622): 1123–1127. Google Scholar. DiMasi, E.; L.B. Gower, eds. 2014. Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials. Taylor & Francis. Google Scholar. Ducheyne, P.; D.W. Grainger; K.E. Healy; D.W. Hutmacher; C.J. Kirkpatrick, eds. 2017. Comprehensive Biomaterials II. Elsevier. Google Scholar. Habibah, T.U.; D.V. Amlani; M. Brizuela. 2018. Hydroxyapatite Dental Material. StatPearls Publishing. Google Scholar. Huster, D.; J. Schiller; K. Arnold. 2002. Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid-state NMR spectroscopy. Magnetic Resonance in Medicine 48(4): 624–632. Google Scholar. Klinowski, J., ed. 2004. New Techniques in Solid-State NMR. Springer. Google Scholar. Münnemann, K.; T. Böni; G. Colacicco; B. Blümich; F. Rühli. 2007. Noninvasive 1H and 23Na nuclear magnetic resonance imaging of ancient Egyptian human mummified tissue. Magnetic Resonance Imaging 25(9): 1341–1345. Google Scholar. Peroos, S.; Z. Du; N.H. de Leeuw. 2006. A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials 27(9): 2150–2161. Google Scholar. Reichert, D.; O. Pascui; E.R. de Azevedo; T.J. Bonagamba; K. Arnold; D. Huster. 2004. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels. Magnetic Resonance in Chemistry 42(2): 276–284. Google Scholar. Schulz, J.; M. Pretzsch; I. Khalaf; A. Deiwick; H.A. Scheidt; G. von Salis-Soglio; A. Bader; D. Huster. 2007. Quantitative Monitoring of Extracellular Matrix Production in Bone Implants by 13C and 31P Solid-State Nuclear Magnetic Resonance Spectroscopy. Calcified Tissue International 80: 275–285. Google Scholar. Serrahima, A.B. 2018. Intrinsic Osteoinduction and Osteogenesis of Biomimetic Calcium Phosphate Scaffolds with Different Nano-, Micro-and Macroporosities: Ectopic and Orthotopic Implantation in a Canine Model. Doctoral dissertation. UPC. Google Scholar. Umar, S.; A.H.M.G. Sarwar; K. Umar; N. Ahmad; M. Sajad; S. Ahmad; C.K. Katiyar; H.A. Khan. 2013. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cellular Immunology 284(1–2): 51–59. Google Scholar. Wu, Y.; J.L. Ackerman; E.S. Strawich; C. Rey; H.M. Kim; M.J. Glimcher. 2003. Phosphate Ions in Bone: Identification of a Calcium-Organic Phosphate Complex by 31P Solid-State NMR Spectroscopy at Early Stages of Mineralization. Calcified Tissue International 72: 610–626. Google Scholar. Wu, Y.; M.J. Glimcher; C. Rey; J.L. Ackerman. 1994. A Unique Protonated Phosphate Group in Bone Mineral Not Present in Synthetic Calcium Phosphates: Identification by Phosphorus-31 Solid State NMR Spectroscopy. Journal of Molecular Biology 244(4): 423–435. Google Scholar. Zandi, M. 2008. Studies on the Gelation of Gelatin Solutions and on the Use of Resulting Gels for Medical Scaffolds. Doctoral dissertation. University of Duisburg-Essen (UDE). Google Scholar.
© 2023 ARQUEOLOGIA IBEROAMERICANA. ISSN 1989-4104. CC BY 4.0 License.
Open Access Journal. Edited & Published by Pascual Izquierdo-Egea [P. I. Egea]. Graus & Pina de Ebro, Spain. W3C HTML 4.01 compatible. |